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ABSTRACT 6G networks can support global, ubiquitous and seamless connectivity through the 

convergence of terrestrial and non-terrestrial networks (NTNs). Unlike terrestrial scenarios, NTNs pose 

unique challenges including propagation characteristics, latency and mobility, owing to the operations in 

spaceborne and airborne platforms. To overcome all these technical hurdles, this survey paper presents the 

use of artificial intelligence (AI) techniques in learning and adapting to the complex NTN environments. We 

begin by providing an overview of NTNs in the context of 6G, highlighting the potential security and privacy 

issues. Next, we review the existing AI methods adopted for 6G NTN optimization, starting from machine 

learning (ML), through deep learning (DL) to deep reinforcement learning (DRL). All these AI techniques 

have paved the way towards more intelligent network planning, resource allocation (RA), and interference 

management. Furthermore, we discuss the challenges and opportunities in AI-powered NTN for 6G networks. 

Finally, we conclude by providing insights and recommendations on the key enabling technologies for future 

AI-powered 6G NTNs. 

INDEX TERMS Non-Terrestrial Networks (NTNs), Artificial Intelligence (AI), 5G/6G, Unmanned 

Aircraft System (UAS), Resource Allocation (RA), Reinforcement Learning (RL), Deep Learning (DL)

I. INTRODUCTION 

The evolution of wireless communication technology has 

been rapid in recent years, with mobile network operators 

deploying the fifth-generation (5G) technology worldwide. 

The Third Generation Partnership Project (3GPP) has 

begun the standardization of 5G-Advanced, which is 

expected to offer higher data rates, lower latency, increased 

capacity, and more efficient spectrum utilization than any 

of its predecessors [1]-[2]. However, due to limited 

coverage areas and geographic constraints, it is challenging 

to guarantee ubiquitous coverage everywhere with existing 

network infrastructures. In times of natural disasters, 

connectivity outages are widespread, which can be 

detrimental to critical actions necessary for saving lives and 

properties. To address these challenges, research on 5G-

Advanced and sixth-generation (6G) communication 

networks are shifting towards non-terrestrial networks 

(NTNs), which include Low/Medium/Geostationary (LEO, 

MEO, GEO) satellites, high altitude platform stations 

(HAPS), unmanned aircraft systems (UASs), or a 

combination of these technologies [3]. NTNs can provide 

uninterrupted communication and high data transfer rates 

in remote, disaster-stricken, and rural areas where 

terrestrial networks are not available. Recent studies have 

shown that NTNs can offer high availability and low 

latency, making them an ideal candidate for 6G 

communication systems [4]-[5]. 

Despite these advantages, NTNs present significant 

challenges related to their deployment and management. 

One of the primary challenges is how to deploy and manage 

efficiently, including the physical and ground-based 

infrastructure, such as antennas, base stations (BSs), and 

backhaul networks. Furthermore, the dynamic nature of 

NTNs, with platforms moving at high speeds and in 
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different directions, introduces additional challenges 

related to signal propagation, interference, and handover 

management [6]-[7]. 

Researchers are turning to artificial intelligence (AI) as a 

promising solution to address these challenges. AI can help 

to optimize the performance of NTNs by analyzing data 

from various sources, predicting network behavior, and 

adapting to changing conditions [8]. For example, AI can 

enable intelligent power management and beamforming to 

maximize resource utilization while minimizing 

interference and maintaining the quality of service (QoS) 

[9]. Also, AI can provide advanced analytics and automated 

decision-making to enhance the efficiency and reliability of 

NTNs. 

The integration of AI in cellular networks is still in its early 

stages compared to other fields, primarily due to wireless 

networks’ complexity and time-varying nature [10]. The 

multi-dimensional topology of the next-generation wireless 

networks adds an additional layer of complexity to the 

existing communication networks, making it challenging to 

solve problems that arise in real networks. Nevertheless, AI 

techniques can be exploited to overcome these challenges 

and provide efficient solutions. NTNs, being an integral 

part of next-generation wireless networks, holds great 

potential for the application of AI. However, implementing 

these algorithms in real-world environments while ensuring 

reliable vertical connectivity between ground and space 

networks can present practical challenges. Proper AI 

solutions must complement theoretical advancements in 

communication systems design to achieve optimal 

performance in future networks. 

A. RELATED WORKS AND PAPER CONTRIBUTION 

Several studies and surveys have been conducted to explore 

the possibility of NTNs for 6G wireless communications. 

However, it is very rare to explore the concept of AI for 

NTNs. Instead, numerous research has focused on network 

architectures, standards, regulations, and use cases. For 

instance, [11] and [12] give an overview of different NTN 

use, including satellite communication, aerial drones, and 

terrestrial devices. In [13], challenges associated with 

satellite communication in 6G are examined, including 

power constraints, latency issues, and frequency allocation. 

The works in [14] and [15] explore the potential impact of 

6G networks on various industries, including agriculture, 

transportation, and healthcare. Unlike [14] and [15], the 

works in [16] and [17] focus on the potential security threats 

of NTNs by discussing the technical aspects of NTNs, such 

as the different radio access technologies available and the 

requirements and challenges of integrating 6G with existing 

technologies. Overall, these works provide valuable insights 

into the potential of NTNs for 6G and the various challenges 

to consider for their successful implementation. The 

overview of the vision, requirements, and challenges of 6G 

wireless networks are explained in [18] and [19]. The current 

status and future directions of 6G wireless networks are 

reviewed in [20] and [21]. Furthermore, [22] and [23] discuss 

the key enabling technologies for 6G networks, such as 

terahertz (THz) communication, visible light communication 

(VLC), and wireless power transfer. The applications, 

technologies, and challenges of 6G wireless networks are 

explored in [24] and [25]. The challenges and opportunities 

in 6G networks, including ultra-reliable, low-latency, and 

massive machine-type communication, are discussed in [26], 

[27], and [28]. A comprehensive 6G wireless communication 

survey is presented in [29] and [30]. The concept and 

standardization of 6G networks, including new spectrum 

bands and wireless technologies, are explained in [31] and 

[32]. In [33] and [34], the authors explore the opportunities 

and challenges of 6G networks, including the use of satellite 

communication and energy-efficient design. A 

comprehensive survey of 6G networks, including new radio 

access technologies and security challenges, is presented in 

[35] and [36]. In [37], the authors present a comprehensive 

survey of 6G wireless networks, including new antenna 

technologies and network slicing. Similarly, [38] explains 

the five facets of the new wireless generation, along with its 

research challenges and different opportunities for the new 

wireless generation.  

The aforementioned studies do not incorporate the use of AI 

in their analysis. In contrast, this survey paper analyzes AI's 

utilization in NTNs to enhance 6G wireless communications 

networks, as summarized in Table 1. Firstly, we discuss the 

potential benefits and challenges of integrating AI in NTNs, 

including its impact on network performance, reliability, and 

security. Secondly, we show different AI techniques that can 

be applied to NTNs, such as machine learning (ML), deep 

learning (DL), and deep reinforcement learning (DRL). 

Finally, this survey paper discusses the potential applications 

of AI-powered NTNs in various industries, including 

healthcare, transportation, and smart cities. We analyze the 

use cases for AI-powered NTNs in these industries, 

including how they can improve efficiency and reduce costs. 

The main contributions of this survey paper can be 

summarized as follows: 

1) We provide an overview of NTNs, including their 

introduction in the context of 6G networks, their role in 

enhancing network performance, and their key features 

and requirements. Additionally, we analyze the unique 

security and privacy concerns associated with NTNs, 

providing valuable insights into their intrinsic nature. 

2) We discuss the AI approaches by explaining the 

fundamental aspects of AI techniques used in the NTNs. 

As a result, we can select appropriate AI approaches for 

dealing with various NTN issues. 
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Table 1. Summary of Related Works on 6G 

 

3) We provide a holistic overview of AI-enabled NTN 

research and a motivating argument for their 

implementation. We explore the challenges of NTNs, 

outline the issue associated with traditional methods, and 

provide ideas for the superiority of AI techniques. 

4) We summarize relevant case studies and existing 

research used to solve the resource allocation problem 

associated with AI in NTNs. 

5) We summarize the main challenges and opportunities of 

using AI for NTNs. In addition, we provide a set of 

recommendations for future research directions in this 

area. We also identify potential AI applications in areas  

 

 

such as network optimization and resource allocation. 

B. PAPER ORGANIZATION 

This paper is organized as follows. Section II provides an 

overview of NTN and its potential role in 6G networks. 

Different security and privacy concerns of NTNs are 

discussed in Section III. In Section IV, we introduce an 

overview of AI techniques that can be used to optimize the 

performance of NTNs. Section V discusses the recent 

research in AI-powered NTN for 6G networks. Section VI 

identifies the key research directions and challenges in this 

field, and Section VII concludes the paper. The structure of 

the paper is shown in Fig. 1. 

Ref Year Contribution and Main Focus 

[22] 2019 
A vision for 6G networks in 2030 for superior performance and enabling emerging services and applications is discussed. The focus is to 

propose a large-dimensional, autonomous network architecture integrating various networks and advanced technologies. 

[17] 2020 
The security and privacy issues associated with 6G networks are being explored as next-generation solutions due to the limitations of 5G 

networks. The main focus is to discuss four key aspects of 6G networks and their associated security and privacy issues. 

[19] 2020 
Vision, technology trends, and challenges for 6G are discussed. The main focus is providing the key enabler of a ubiquitous intelligent 

mobile society and suggesting a roadmap for the 6G standards. 

[21] 2020 
Recent advances in 6G wireless systems are discussed. The main focus is to present a taxonomy of key technologies and open research 

challenges and propose practical guidelines such as neural networks and blockchain-based secure business models. 

[31] 2020 

A discussion of 6G wireless communication technologies is provided, emphasizing fundamental breakthroughs at the physical layer. The 

main focus is to provide an overview of these technologies, including holographic radio, terahertz communication, large, intelligent 

surface, and orbital angular momentum. 

[32] 2020 
The limitations of 5G and the need to develop the 6G wireless system are discussed. The main focus is to provide the vision for 6G and 

outline a research agenda for enabling the new services and technologies required. 

[13] 2021 
The potential of UAVs in beyond 5G and 6G wireless networks are discussed. The main focus is to highlight the use of cellular networks, 

advanced technologies, machine learning, and non-terrestrial networks to support UAVs in 6G. 

[23] 2021 

A fiber-wireless network architecture is presented based on full spectrum, fully adaptive, and coordinated radio access networks (RANs). 

The main focus is to offer promising scenarios such as NR-free space optical backhauling and indoor systems via visible light 

communication for high-speed data link and VLC-aided positioning systems. 

[24] 2021 
The need for 6G to overcome the limitations of current cellular networks and support high-bandwidth applications are discussed. The main 
focus is to provide an overview of system requirements, potential technologies, and recent research progress. 

[25] 2021 
The overviews of reconfigurable intelligent surfaces (RISs) for 6G wireless networks are explained. The main focus is to provide the use 

case of RISs to create a favorable propagation channel and improve performance gains. 

[26] 2021 
A comparison of 5G and 6G technologies, including terahertz communication, RIS, and blockchain, are presented. The main focus is to 
illustrate how IRS can enhance signal quality by controlling passive reflecting elements and how blockchain can enhance system security. 

[16] 2022 

The possibility of integrating terrestrial and NTNs is discussed as a means of improving user experience and connecting unconnected 

devices. The main focus is identifying the opportunities and challenges for defining and orchestrating a new 3D wireless network 
architecture. 

[28] 2022 
The challenges of 5G technology and the potential benefits of 6G technology for edge networks in processing real-time applications are 

examined. The focus is on integrating ultra-reliable 6G technology into edge computing networks. 

[33] 2022 
The potential of IoT devices and energy-efficient 6G wireless communication in transforming smart cities into super-smart cities is 
conferred. The main focus is to review key technologies and applications, including quantum communication, blockchain, and VLC and 

identifies promising trends for using 6G through IoT devices in smart cities. 

[39] 2022 
An overview of 6G mobile networks, including motivations, use cases, requirements, and research projects, are reviewed. The main focus 

is on the transition from 5G to B5G and on the advanced features that will be required for 6G. 

[40] 2022 

The role of wireless backhauls in 5G networks and its integration with new technologies like UAV, HAPS, mmWave, mMIMO, and 

beamforming are presented. This article focuses mainly on rural connectivity, mobile edge computing, and security issues related to wireless 

backhaul in 5G and B5G. 

[34] 2023 
The design of an energy-efficient resource allocation system for NTNs is explained. The main focus is to maximize system energy 

efficiency by collaboratively optimizing user equipment association, power control, and UAV deployment. 

[38] 2023 

Researchers are exploring five Facets of 6G to develop next-generation solutions, i.e., next-generation architectures, networking, IoT, 

wireless positioning and sensing, and deep learning applications. The main focus is to review promising techniques and architectures, 
address vulnerabilities, and advocate for multi-component Pareto optimization for optimal solutions. 

[41] 2023 
Distributed edge learning (EL) techniques and their integration with advanced communication optimization designs for B5G wireless 

networks are explored. The main focus is to present the open problems and emerging application opportunities for the B5G network. 

This work 

We discuss the use of AI in NTNs for 6G communication networks. The main focus of the survey is: 
1. NTNs role in 6G networks and unique security/privacy concerns. 

2. Applicable AI approaches for NTN problems and proper technique selection. 

3. AI-enabled NTN research avenues and superiority over traditional methods. 
4. AI-based NTN resource allocation case studies and research. 

5. Future open issues in AI for NTNs, considering constraints for its maximum potential. 
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To facilitate the readability of this paper, Table 2 provides 

the list of abbreviations with the terms associated. 

 
II. NON-TERRESTRIAL NETWORKS 

NTNs have emerged as a promising solution for extending 

coverage and improving connectivity in 6G networks. NTNs 

are a class of wireless networks that operate using non-earth-

based platforms to provide connectivity [3],[10],[11]. Unlike 

terrestrial networks, NTNs can cover large areas, operate 

independently of terrestrial infrastructure, and be quickly 

deployed in areas without adequate terrestrial infrastructure 

[8]. 

A. OVERVIEW OF NTNs TECHNOLOGIES 

I. Low Earth Orbit (LEO) Satellites: LEO satellites are 

satellites that orbit the Earth at altitudes between 200 and  

2000 kilometers. They have emerged as a promising 

platform for providing connectivity to remote and rural 

areas. Recent developments in satellite technology have 

reduced the cost of launching and operating LEO satellites, 

making it a viable option for commercial use. Some 

specific technologies for LEO include the International 

Space Station (ISS), the Hubble Space Telescope, and 

the Global Positioning System (GPS) [42]-[43]. 

II. Medium Earth Orbit (MEO) Satellites: MEO satellites are 

positioned in orbits between approximately 2,000 and 

35,786 kilometers above the Earth's surface. They offer a 

compromise between the coverage area and the signal 

delay. MEO satellites are commonly used for navigation 

and communication purposes. MEO allows longer 

communication windows than LEO satellites, resulting in 

reduced handovers and a more stable connection for users. 

MEO is often used for global navigation satellite systems 

(GNSS) like GPS, GLONASS, and Galileo, as well as for 

remote sensing and communication purposes. 

III. Geostationary Orbit (GEO) Satellites: GEO satellites are 

positioned at approximately 35,786 kilometers above the 

equator. These satellites have an orbital period that matches 

the Earth's rotation, allowing them to remain fixed relative 

to a specific point on the Earth's surface. This characteristic 

makes them ideal for applications that require continuous 

coverage of a specific geographic area, such as television 

broadcasting and weather monitoring. 

IV. High Altitude Platform Stations (HAPS): HAPS are 

unmanned platforms that operate in the stratosphere at 

altitudes between 17 to 22 kilometers. They have the 

potential to provide connectivity to areas that are difficult to 

access or where terrestrial infrastructure is not feasible. 

HAPS can be used for a range of applications, including 

communication, surveillance, and environmental 

monitoring. HAPS includes balloons and airships. Some 

specific examples might include Google’s Project 

Loon, Facebook’s Aquila, and the Stratobus airship 

[44]-[45].  

V. Unmanned Aircraft Systems (UASs): UASs operate 

without a pilot. UASs can be quickly deployed to provide 

connectivity in areas affected by natural disasters or 

emergencies. They can be used for a variety of applications, 

including communication, surveillance, and delivery. Some 

specific examples that use the UASs are DJI Mavic, the 

Parrot Bebop 2, and Lockheed Martin Indago3 [46], 

[47],[48],[49]. 

B. ROLE OF NTNs IN 6G NETWORKS 

6G wireless communications networks will require a variety 

of new technologies to meet the high data rate, low latency, 

and mobility requirements of the future network. One 

possible solution is using NTNs that offer a viable option to 

provide these services cost-effectively and efficiently. They  

Figure 1. Article Structure 
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Table 2. List of Abbreviations 

Abbreviation Definition 

3GPP 3rd generation partnership project 

5G Fifth generation 

6G Sixth generation 

AI Artificial intelligence 

AP Access point 

B5G Beyond fifth generation 

BSs Base stations 

CNN Convolutional neural networks 

DBN Deep belief network 

DL Deep learning 

DRL Deep reinforcement learning 

EL Edge learning 

FL Federated learning 

GA Genetic algorithms 

GPS Global positioning system 

HAPs High-altitude platforms 

IDS Intrusion detection systems 

IoT Internet of things 

IPS Intrusion prevention system 

ISS International space station 

LEO Low earth orbit 

MARL Multi-agent reinforcement learning 

MIMO Multiple input multiple output 

mMIMO Massive multiple input multiple output 

ML Machine learning 

NFV Network function virtualization 

NTNs Non-terrestrial networks 

ORAN Open radio access network 

PCA Principal component analysis 

QoS Quality of service 

RA Resource allocation  

RAN Radio access network 

RIS Reconfigurable intelligent surfaces  

RL Reinforcement learning 

SDN Software-defined networks 

SL Supervised learning 

SVMs Support vector machines 

UASs Unmanned aircraft systems  

UAV Unmanned aerial vehicle 

UL Unsupervised learning 

VLC Visible light communication 

VNFs Virtual network functions 

are expected to play a vital role in enabling the full potential 

of 6G networks. 

The terrestrial network infrastructure, including 5G 

networks, has limitations in terms of coverage (e.g., 

remote/rural areas, sea/air, etc.). One of the key roles of 

NTNs in 6G networks is to complement the terrestrial 

network infrastructure and overcome its limitations. NTNs 

can provide broader coverage, higher capacity, and mobility 

support in areas where terrestrial networks are unavailable or 

impractical. Moreover, NTNs can also serve as a backup or 

redundant network in case of network failures or disasters, 

ensuring high reliability and availability of communication 

services.  

To date, several research efforts have been undertaken to 

explore the potential of NTNs for 6G networks. For instance, 

the integration of LEO satellites into 6G communications 

networks has been studied extensively, with a focus on 

optimizing the satellite constellation design, routing 

algorithms, and interference management techniques [50]. 

Similarly, the use of HAPs in 6G networks has been 

investigated, focusing on developing efficient 

communication protocols, beamforming techniques, and 

energy-efficient power management schemes [51]. The use 

of UASs in 6G networks has also been explored, with a focus  

on developing aerial base stations and efficient trajectory 

planning algorithms [52].  

Overall, the role of NTNs in 6G networks is crucial for 

providing ubiquitous, reliable, and high-capacity wireless 

communication services. The unique characteristics of 

NTNs, such as high altitude, 3D mobility support, and broad 

coverage, make them a promising solution for meeting the 

requirements of future wireless networks. Ongoing research 

efforts are expected to further improve the performance and 

efficiency of NTNs in 6G networks and pave the way for the 

realization of the full potential of these networks. 

C. KEY NTNs FEATURES AND REQUIREMENTS 

NTNs are critical for ensuring their success in 6G 

communication systems. NTNs architecture must be 

designed to address key challenges such as 3D mobility link 

reliability, latency, energy efficiency, and capacity. The 

NTNs system must be able to support a large number of 

devices with high data rates and low latency while also being 

scalable, flexible, and cost-effective.  

One key feature of NTNs is the use of advanced antenna 

technologies, such as beamforming, which can enhance 

signal strength and reduce interference. Other key features 

include the use of multi-frequency bands, efficient power 

management techniques, and advanced modulation schemes. 

NTNs must have strong authentication, encryption, and 

access control mechanisms to ensure security and privacy.  

NTN requirements for 6G communication systems include 

their ability to provide ubiquitous connectivity, reliability, 

and high data rates with low latency. The system must 

support seamless integration with terrestrial networks and 

enable global coverage with minimal delay. Additionally, 

NTNs must be designed to meet the specific needs of various 

applications, such as the Internet of Things (IoT), smart 

cities, and connected vehicles. It must be able to support 

high-altitude platforms, LEO satellites, and geostationary 

orbit satellites. The system should also be resilient to natural 

disasters and cyber-attacks.  

Fig. 2 summarizes the key features and requirements of 

NTNs for 6G communication systems.  
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III. SECURITY AND PRIVACY IN NTN 

Security and privacy are critical considerations in designing 

and implementing NTNs for 6G. The increasing reliance on 

advanced technologies in the telecommunications industry 

means that network security threats are becoming more 

sophisticated and complex. As the next generation of 

wireless networks, 6G networks are expected to bring a 

revolutionary transformation to the world of communication. 

In the context of 6G, security and privacy concerns are 

magnified due to the large-scale deployment of networked 

devices and the increasing complexity of network 

architectures. These concerns include data leakage, identity 

theft, and unauthorized access to sensitive information. 

Developing secure and privacy-preserving technologies is  

essential to ensure the secure operation of 6G networks. The 

following is a list of security and privacy concerns for the 

NTNs in 6G networks. 

Authentication and Authorization: Authentication and 

authorization refer to verifying the identity of devices or 

users and determining their level of access privileges within 

the network. These mechanisms are crucial for ensuring the 

security and privacy of the network, as they prevent 

unauthorized devices or malicious actors from gaining 

access and potentially causing harm. 

Advanced technologies and protocols will be required to 

achieve strong authentication in 6G networks. One potential 

approach is biometric authentication, which relies on 

individuals' unique physical or behavioral traits, such as 

fingerprints or facial recognition. These biometric 

characteristics can serve as strong authentication factors, 

making it difficult for unauthorized entities to impersonate 

legitimate users [53]. 

Another important aspect of authentication and authorization 

in 6G networks is the regular updating of policies. As 

security threats evolve over time, it is crucial to keep 

authentication and authorization policies up to date to 

address new vulnerabilities and prevent potential security 

breaches. Regular updates help ensure that the network 

remains secure against emerging threats and that any new 

authentication methods or standards are implemented 

effectively [54]. 

Privacy and Confidentiality: Privacy and confidentiality 

are crucial considerations for the 6G network due to the vast 

amount of data generated and the increased use of AI-

powered devices. With the proliferation of IoT devices and 

the integration of AI technologies, 6G networks are expected 

to handle a massive volume of data, including personal, 

sensitive, and confidential information. 

One of the main challenges for privacy and confidentiality in 

6G networks is ensuring that this data is protected from 

unauthorized access as it traverses across various network 

segments. Data transmitted over the network may pass 

through multiple nodes, edge computing systems, and cloud 

infrastructures, increasing the risk of interception or 

unauthorized access at any point in the network. Therefore, 

robust security measures must be implemented to safeguard 

data privacy and maintain confidentiality [55]. 

Network Congestion: The 6G network’s high-speed 

capabilities can cause network congestion, leading to a 

higher risk of network attacks. With more devices connected 

to the network, the chances of network congestion increase, 

creating a larger attack surface [56].  

Malware and Hacking: As 6G networks become more 

complex, the risk of malware and hacking increases, putting 

the security and privacy of the network at risk. It is essential 

to have robust, secure technologies in place, such as 

encryption, authentication, and firewalls, to protect the 

network. Additionally, users should follow best practices for 

online security, such as using strong passwords and being 

aware of potential phishing scams [36].   

Resource Allocation: 6G technology is expected to have 

enhanced security features to ensure data is protected from 

unauthorized access. Additionally, the network must be able 

to allocate resources to meet users' demands efficiently. 

Finally, the network must be able to adapt to changing user 

needs and respond quickly to changing conditions [57].  

Fault Tolerance: Identifying and mitigating faults in the 

network is essential for maintaining the network’s security 

and privacy. This is done by detecting errors, isolating them, 

and recovering from them without impacting the system. 

Fault tolerance is a key element in network security and helps 

prevent unauthorized access or misuse of the network. It also 

helps to protect against data loss [58].  

Trust Management:  Trust management is vital to the 6G 

network security, enabling secure interactions and 

collaborations between different devices, services, and users. 

Figure 2. Basic Features of NTN 
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As 6G networks become more complex, with a diverse range 

of devices, services, and stakeholders, managing trust 

becomes increasingly challenging. Trust-related attacks, 

such as malicious entities masquerading as trusted devices or 

services, pose a significant risk. These attacks can lead to 

unauthorized access, data breaches, or disruptions in network 

operations. 

To address the trust management challenges in 6G networks, 

several approaches can be considered. One such approach is 

the use of trust models and frameworks that assess and 

quantify the trustworthiness of devices, services, or entities 

based on their behavior, reputation, or credentials. These 

models can help establish a trust hierarchy and determine the 

level of trustworthiness associated with different entities 

within the network. 

Additionally, secure authentication protocols, such as public 

key infrastructure or certificate-based authentication, can be 

employed to verify the identities of devices or entities and 

ensure that only trusted entities are granted access to the 

network [59].  

AI can play a crucial role in mitigating these security and 

privacy concerns. AI can be leveraged to provide enhanced 

security and privacy features that go beyond traditional 

security measures. The following are some of the ways AI 

can help resolve these concerns.  

Threat Detection and Prevention: Threat detection and 

prevention play a crucial role in ensuring network security. 

As the complexity of the 6G network increases; therefore, 

advanced mechanisms are required to detect and mitigate 

potential threats in real-time. 

AI can be a powerful threat detection and prevention tool in 

6G networks. AI algorithms can analyze large volumes of 

network data and identify patterns or anomalies that indicate 

potential security threats. By leveraging machine learning 

techniques, AI systems can continuously learn and adapt to 

new attack vectors and evolving threats, effectively detecting 

known and unknown threats. 

Anomaly Detection: AI can be used to identify and flag 

unusual behavior on the network, which may be an indicator 

of a potential security breach.  
Predictive Analysis: Predictive analysis uses AI techniques 

to forecast potential security threats and take proactive 

measures to prevent them before they materialize. AI-

powered predictive analysis can identify indicators that may 

lead to future security incidents or attacks by analyzing 

historical data, network patterns, and security trends. 

Using ML algorithms, predictive analysis models can learn 

from historical data to recognize patterns and correlations 

associated with security threats. These models can then 

analyze real-time data and identify early warning signs or 

anomalies that could indicate an imminent security breach. 

The proactive measures taken based on predictive analysis 

can include strengthening network defenses, implementing 

additional security controls, or raising alerts to security 

teams to investigate potential vulnerabilities or suspicious 

activities. Organizations can significantly reduce the risk of 

successful attacks and mitigate potential damage by acting 

preemptively. 

Identity Management: AI can manage identities and access 

control more effectively, ensuring that only authorized 

devices and users can access the network resources. AI can 

facilitate advanced authentication mechanisms such as 

biometric recognition, behavior analysis, and contextual 

information to verify the identity of users and devices 

accurately. By leveraging AI-driven identity management 

solutions, 6G networks can enhance security, prevent 

unauthorized access, and mitigate privacy  risks.    

Encryption: AI can contribute to enhancing encryption 

techniques by improving encryption algorithms, key 

management, and overall cryptographic processes. 

Leveraging AI algorithms can strengthen encryption 

mechanisms to withstand increasingly sophisticated attacks 

and cryptographic vulnerabilities. AI can assist in 

developing more robust encryption algorithms, optimizing 

key generation and distribution, and detecting potential 

weaknesses or patterns that attackers may exploit. This helps 

create a more secure data transmission and storage 

environment in 6G networks [60]. 

Behavioral Analysis: AI algorithms can analyze user and 

device behavior patterns, allowing the network to detect and 

prevent abnormal activities that could signify a potential 

security threat. By continuously monitoring behavior in real-

time, AI-based systems can identify suspicious actions, such 

as unauthorized access attempts, unusual data transfers, or 

anomalous user behaviors. This proactive approach enables 

the network to respond swiftly and mitigate potential threats 

before they can cause harm [17]. 

In summary, the 6G network’s security and privacy concerns 

are significant and must be adequately addressed to ensure 

the network’s safety and secure operation. AI can provide 

enhanced security and privacy features, enabling the network 

to mitigate these concerns. 

IV. AI TECHNIQUES FOR NTNs OPTIMIZATION 

The optimization process plays an important role in 

improving the performance and efficiency of wireless 

networks deployed in non-terrestrial environments such as 

satellites, drones, and balloons. Optimization can be used to 

identify the best settings for the network, such as the power 

level, frequency, and type of antenna, as well as the optimal 

placement of devices. This can lead to improved coverage, 

increased bandwidth, and reduced latency. Additionally, 

optimization can save energy by reducing the amount of 

power required to operate the network. 

Numerous approaches were defined for NTN optimization. 

These traditional methods are based on mathematical models 

and simulations that use prior knowledge of the network 

parameters and environment to make predictions and 

decisions. For example, network planning involves 

designing the network architecture, coverage area, and 
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capacity based on the expected traffic and user requirements 

[61]. Link budget analysis involves calculating the power 

budget and signal-to-noise ratio for each link in the network 

to ensure reliable and high-quality communication [62]. 

Antenna design involves selecting the antenna’s type, size, 

and orientation based on the frequency, gain, and radiation 

pattern [63]-[64]. Signal processing involves filtering, 

equalizing, and modulating the signal to optimize 

transmission and reception [65].  

These traditional approaches have been used for a long time, 

but they have some limitations when it comes to NTN 

optimization. First, they require prior knowledge of the 

network parameters and environment, which may not be 

accurate or up-to-date, especially in dynamic and uncertain 

environments. Second, they are not adaptive enough to 

handle the changing conditions and demands of the network, 

as they rely on fixed and predefined models and rules. Third, 

they may not be able to handle the heterogeneity and 

complexity of the network, as they assume a uniform and 

idealized network topology and behavior. Therefore, 

exploring new approaches based on AI techniques can 

overcome these limitations and provide more accurate and 

adaptive solutions for NTN optimization  [66]. These AI 

techniques can learn from the data and adapt to changing 

environments. The AI techniques can be broadly classified 

into three categories: supervised learning (SL) [67], 

unsupervised learning (UL) [68], and RL [69]. The basic 

architecture of AI can be shown in Fig. 3. 

SL involves training a model using labelled data, where the 

input-output pairs are known in advance. The model can then 

be used to make predictions on new inputs. In NTN 

optimization, SL can be used for various tasks, such as 

channel estimation [70], interference mitigation [71], and 

resource allocation [72]. For example, a deep neural network 

(DNN) can be trained to predict the best channel and power 

allocation for a given set of users and resources. The 

advantage of supervised learning is that it can produce 

accurate results with high precision. SL requires labelled 

data, where the input-output pairs are known in advance. 

However, in NTN optimization, it may be difficult to obtain 

labelled data, as the network operates in dynamic and 

uncertain conditions, and the ground truth may not be 

available. In addition, the labelled data may not be 

representative of the entire network, leading to biased or 

inaccurate models. SL is shown in Fig. 4. 

UL involves training a model using unlabeled data, where 

the input-output pairs are not known in advance. The model 

can then discover patterns and structures in the data and 

group them into clusters or categories. In NTN optimization, 

unsupervised learning can be used for various tasks, such as 

anomaly detection [73], network clustering [74], and traffic 

analysis [75]. For example, a self-organizing map can be 

used to cluster the satellites or drones based on their location  

and connectivity [76]. The advantage of unsupervised 

learning is that it can find hidden patterns in data that may 

not be easily visible. Unsupervised learning does not require 

labelled data, but it relies on the assumption that the data has 

some inherent structure or pattern that can be discovered. 

However, in NTN optimization, the network may be too 

complex or heterogeneous, and the data may not have clear 

patterns or clusters that can be easily identified. In addition, 

unsupervised learning may suffer from the problem of 

overfitting, where the model memorizes the data instead of 

learning the underlying structure. The basic structure of UL 

is seen in Fig. 5. 

Figure 3. Artificial Intelligence Architecture 
 

Figure 4. Supervised Learning 

Figure 5. Unsupervised Learning 
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RL involves training an agent to interact with an 

environment and learn an optimal policy to maximize a 

cumulative reward [77]. In NTN optimization, RL can be 

used for various tasks, such as beamforming, routing, and 

scheduling. For example, a Q-learning algorithm can be used 

to find the optimal beamforming angles and power levels for 

a given set of antennas and users [78]. 

One of the advantages of RL is that it can handle dynamic 

environments with large state and action spaces. However, it 

is important to note that RL is typically used for discrete state 

and action spaces and is not well-suited for problems with 

continuous state and action spaces. Additionally, while  

RL can handle dynamic environments but may struggle with 

large and complex ones. Overall, while RL has shown 

promising results in a range of domains, it is crucial to 

consider its applicability to the specific problem. In the 

context of NTN optimization, RL can be a powerful tool, but 

it may not always be the best choice depending on the 

complexity and nature of the problem. A basic representation 

of RL is shown in Fig. 6. 

DRL is an extension of RL that has been shown to be more 

effective in handling complex and high-dimensional 

problems. In RL, the policy and value functions are 

represented using simple linear or nonlinear models, 

whereas, in DRL, deep neural networks are used to represent 

these functions. This allows the DRL models to learn more 

complex and abstract representations of the state and action 

spaces, which can result in better performance and more 

efficient exploration of the environment. 

DRL has been able to achieve state-of-the-art performance 

in various domains, such as robotics, games, wireless 

communication, and natural language processing. These 

successes have motivated researchers to explore the use of 

DRL for NTN optimization, where the state and action 

spaces are often high-dimensional and continuous. By using 

DRL, it is possible to learn an optimal policy for resource 

allocation [79], [80], [81],[82], routing [83], and scheduling 

[84] that operate in dynamic and uncertain conditions in 

NTN. 

Another advantage of DRL is that it can handle the 

heterogeneity and complexity of the network, which is 

difficult to model using traditional approaches. For example, 

in a satellite network, the number and position of the 

satellites may change over time, the users may move in 

different directions, and the signal quality may vary 

depending on the atmospheric conditions. DRL can adapt to 

these changes by continuously updating the policy and value 

functions based on the new observations, which can result in 

more robust and efficient operations. 

As summarized in Table 3. SL can address some issues of 

NTN optimization, such as anomaly detection, channel 

estimation, interference mitigation, and resource allocation. 

UL can address issues like network clustering and traffic 

analysis. However, neither of them can address the dynamic 

and uncertain environment of NTN optimization, which is a 

critical factor for NTNs.  

DRL, on the other hand, can address all of the above issues, 

as it can learn the optimal policy for complex and dynamic 

environments where the state and action spaces are high-

dimensional and continuous. DRL can be used for 

beamforming, routing, and scheduling tasks requiring real-

time decision-making and optimization. Therefore, RL, 

especially DRL, is preferred for NTN optimization in 6G 

networks, where the goal is to provide reliable and high-

speed connectivity to remote and underserved areas. 

A. POSSIBLE APPLICATIONS OF AI IN NTNs  

AI has the potential to revolutionize NTN optimization in 6G 

networks by enabling faster and more efficient 

communication. There are several possible applications of 

AI in NTNs for 6G adoption, including Terahertz 

Communications, Optical Wireless Communication, Remote 

Sensing, and Industrial Internet of Things (IIoT).  

One possible application is satellite communication. AI can 

be used to optimize communication between satellites, 

ground stations, and users. It can also help reduce latency 

and interference, thereby improving the system's overall 

performance. For instance, AI can be used to optimize the 

scheduling and routing of satellite links and predict and 

mitigate the effects of atmospheric attenuation and weather 

conditions. 

Another application is drone-based connectivity. AI can be 

used to optimize the coverage and capacity of drone-based 

networks, which can be used for various applications, such 

as search and rescue, environmental monitoring, and 

precision agriculture. For example, AI can be used to   

 

Table 3. Dynamics of SL, UL and RL 

Issues SL UL RL 

Dynamic and uncertain environment x x ✓ 

Heterogeneity and complexity of the network x ✓ ✓ 

High-dimensional and continuous state and 

action spaces 

x x ✓ 

Anomaly detection ✓ ✓ x 

Channel estimation ✓ x x 

Interference mitigation ✓ x x 

Resource allocation ✓ x x 

Network clustering x ✓ x 

Traffic analysis x ✓ x 

Beamforming x x ✓ 

Routing x x ✓ 

Scheduling x x ✓ Figure 6. Reinforcement Learning  
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optimize the trajectory and positioning of drones and manage 

the handover between drones and ground stations.  

AI can also be used to optimize the altitude, trajectory, and 

communication of balloon-based networks. AI can help 

optimize the positioning and deployment of balloons and 

predict and mitigate the effects of atmospheric conditions 

and other environmental factors.  

Finally, AI can be used to optimize energy consumption, data 

processing, and transmission of IoT and remote sensing 

devices. This can be particularly important in limited energy 

applications, such as remote and off-grid locations. AI can 

be used to optimize the routing and processing of data and 

predict and mitigate the effects of interference and other 

environmental factors.  

Table 4 summarizes the possible applications of AI in NTNs 

for 6G networks. 

B. AI-POWERED NETWORK OPTIMIZATION AND 
MANAGEMENT 

AI-powered network optimization and management involves 

the application of AI techniques to improve the performance, 

efficiency, and reliability of 6G communication networks. 

These techniques include ML, DL, and RL, which can be 

used to learn from network data, predict network behavior, 

and make automated decisions.  

One of the key benefits of AI-powered network optimization 

is its ability to handle the complexity and heterogeneity of 

modern communication networks. With the rise of 5G and 

the advent of 6G, networks are becoming more diverse and 

dynamic, with a wide range of devices, protocols, and 

services. AI can help manage this complexity by providing 

automated monitoring, analysis, and optimization tools.  

There are several areas in which AI-powered network 

optimization can be applied. One of these is network  

 
Table 4. AI Possible NTN Applications 

Application Description 

Satellite 

communication 

Optimize communication between satellites, ground 

stations, and users; reduce latency and interference; 

optimize scheduling and routing of satellite links. 

Drone-based 

connectivity 

Optimize coverage and capacity of drone-based 

networks; manage handover between drones and 

ground stations; enable search and rescue, 

environmental monitoring, and precision 

agriculture. 

Balloon-based 

networks 

Optimize altitude, trajectory, and communication of 

balloon-based networks; provide connectivity to 

remote and underserved areas; predict and mitigate 

effects of atmospheric conditions and environmental 

factors. 

IoT and remote 

sensing 

Optimize energy consumption, data processing, and 

transmission of IoT and remote sensing devices; 

optimize data routing and processing; predict and 

mitigate effects of interference and environmental 

factors. 

planning and design, where AI can be used to optimize the 

placement and configuration of network elements such as 

antennas, base stations, and routers. This can help to improve 

coverage, capacity, and QoS while minimizing costs and 

energy consumption. 

Another area is resource allocation, where AI can optimize 

network resource allocation, such as bandwidth, power, and 

spectrum. This can help to improve network efficiency and 

capacity while minimizing interference and congestion.  

AI can also be used for fault detection and diagnosis, 

automatically identifying and diagnosing network faults and 

anomalies and providing recommendations for remedial 

action. This can help to reduce downtime and improve 

network availability and reliability.  

Finally, AI can be used for network security, automatically 

detecting and preventing security threats such as intrusion, 

malware, and denial-of-service attacks. This can help to 

protect network assets and data and maintain user privacy 

and trust.  

In summary, AI-powered network optimization and 

management have the potential to transform the way we 

design, operate, and maintain communication networks. By 

providing automated monitoring, analysis, and decision-

making tools, AI can help improve network performance, 

efficiency, and reliability and enable new applications and 

services. 

 
C. AI-POWERED RECONFIGURABLE INTELLIGENT 

SURFACE WITH NTNs  

Reconfigurable intelligent surface (RIS) is a new technology 

that can manipulate electromagnetic waves by dynamically 

changing their surface properties [85]. They consist of a 

planar array of small, passive, and tunable elements that can 

manipulate electromagnetic waves to improve the 

performance of wireless networks. RIS technology can 

enhance wireless networks' coverage, capacity, and QoS by 

adjusting the phase, amplitude, and direction of 

electromagnetic waves. 

RIS can be used to optimize the signal strength and quality 

of NTN, improving its coverage and capacity. When RIS 

technology is combined with NTNs, the resulting system can 

improve wireless communication performance even more. 

This performance improvement is especially beneficial in 

areas with poor network coverage. RIS is also more cost-

effective than other methods of improving NTN signal 

strength, making it a great solution for both small and large 

networks [86]. Recent research has shown that integrating AI 

with RIS technology can improve the performance and 

reliability of NTNs, such as those used for satellite 

communications, deep-space exploration, and interplanetary 

networks. These networks face unique challenges, such as 

limited bandwidth, high latency, and harsh environmental 

conditions that can impede data transmission and 

connectivity [87]-[88]. 
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AI-powered RIS can help to overcome some of these 

challenges by optimizing the wireless channel in real-time. 

By leveraging AI algorithms, RIS can adapt to changing 

network conditions and dynamically adjust its configuration 

to improve signal quality, increase network capacity, and 

reduce interference [89]-[90]. For example, AI-powered RIS 

can intelligently direct signals to avoid obstacles and 

optimize coverage, which can be especially useful in deep-

space communications where distance can severely attenuate 

signal strength [91]. Moreover, AI-powered RIS can enable 

more efficient use of the available spectrum, which is an 

important resource in NTNs [92]. By intelligently managing 

signal strength and direction, RIS can increase the capacity 

of the existing spectrum, reduce the risk of interference, and 

enable more reliable data transmission. 

One of the key benefits of AI-powered RIS is its ability to 

create a more dynamic and adaptive wireless environment. 

By constantly analyzing and adjusting the wireless channel, 

RIS can ensure that the network remains resilient and 

reliable, even in the face of equipment failure or 

environmental disturbances. Additionally, RIS can be used 

to create more secure and resilient NTNs by controlling and 

manipulating the propagation of radio waves to prevent 

unauthorized access and mitigate the risk of cyber-attacks 

[93]. AI-powered RIS also has the potential to revolutionize 

the field of space exploration. By enabling more advanced 

and sophisticated communications systems, RIS can improve 

the accuracy and reliability of spacecraft navigation systems, 

enabling more precise targeting and maneuvering. 

Furthermore, RIS can create more efficient and robust data 

transmission systems for deep-space exploration, enabling 

more rapid and reliable transmission of scientific data and 

images [94]. 

Although the integration of AI and RIS technology has great 

promise for enhancing the performance and reliability of 

NTNs for future advancements in space exploration, satellite 

communications, and interplanetary networks, however, the 

technical challenges still need to be addressed; ongoing 

research and development in this field suggests that AI-

powered RIS will play an increasingly important role in 

shaping the future of wireless technology in non-terrestrial 

environments. 

D. RELATIONSHIP OF EDGE COMPUTING AND 
CROWDSENSING WITH NTN AND AI 

With its decentralized approach, edge computing 

revolutionizes data processing and analysis by bringing 

computational power closer to the edge of the network. This 

proximity to data sources enables real-time insights and 

analysis, minimizing latency and bandwidth usage and 

making it ideal for time-sensitive applications. By leveraging 

a network of devices such as edge servers, gateways, and 

edge sensors, edge computing infrastructure collaboratively 

processes and filters data at the edge, enhancing efficiency 

and scalability [95]. 

Crowdsensing, a collective sensing paradigm, taps into the 

power of connected individuals and their mobile devices to 

gather data about the environment [96]. Through mobile 

apps or wearable devices, individuals contribute data on 

various aspects like traffic conditions, air quality, noise 

levels, and social behaviors. This distributed data collection 

approach provides extensive coverage and delivers real-time 

insights into the physical world, empowering communities 

with a deeper understanding of their surroundings. 

The relationship between edge computing, crowdsensing, 

NTN, and AI is pivotal in advancing the capabilities of 

modern systems. In [97], a Stackelberg game-based 

computation offloading method can be integrated into edge 

computing and crowdsensing systems to optimize data 

processing at the network edge. Building upon this, the [98] 

proposes a Stackelberg game approach with the assistance of 

UAVs, enhancing the offloading process in mobile edge 

computing networks. The proposed approaches optimize RA 

and enhance system performance by leveraging the insights 

gained from crowdsensing data and utilizing AI techniques, 

such as ML. Furthermore, [99] focuses on cost-

minimization-oriented computation offloading and service 

caching, employing an advanced ML-based approach. 

Integrating such methodology with edge computing, 

crowdsensing, and NTN enables efficient resource 

management, reduced operational costs, and intelligent 

decision-making based on data collected from NTN-enabled 

devices and sensors. Collectively, [97]-[99] contribute to 

integrating edge computing, crowdsensing, NTN, and AI, 

fostering advancements in various domains, including smart 

cities, industrial IoT, and remote sensing applications. 

When edge computing, crowdsensing, NTNs, and AI come 

together, the possibilities for transformative applications 

across domains become endless. In the realm of smart cities, 

this integration enables edge devices connected through 

NTNs to monitor traffic flow, analyze real-time air quality 

data, and optimize energy consumption based on demand 

and availability. Advanced AI algorithms identify congestion 

hotspots, predict air pollution levels, and recommend 

efficient routes or dynamically adjust energy usage, fostering 

sustainable urban environments. 

Furthermore, this integration profoundly impacts public 

safety and emergency response. In the event of natural 

disasters or emergencies, the combination of edge computing 

and crowdsensing allows for rapid data collection and 

analysis. By harnessing data from mobile devices, sensors, 

and surveillance systems, AI algorithms can detect critical 

situations in real-time, such as identifying earthquake-prone 

areas or predicting the spread of wildfires. This timely 

information enables emergency responders to allocate 

resources effectively, coordinate evacuation plans, and save 

lives. The healthcare sector benefits tremendously from this 

synergy. Crowdsensing facilitates remote patient monitoring, 

collecting vital signs, medication adherence, and activity 

levels through wearable devices. Edge computing and AI 
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process this data in real-time, enabling healthcare providers 

to monitor patients' health conditions, detect anomalies, and 

intervene promptly. Moreover, AI-powered algorithms 

analyze population-level health data to identify patterns, 

predict disease outbreaks, and allocate resources efficiently 

during public health emergencies, ultimately saving lives. 

The symbiotic relationship between edge computing, 

crowdsensing, NTNs, and AI also extends to agriculture, 

where edge devices combined with NTNs monitor soil 

moisture levels, temperature, and crop health. AI algorithms 

analyze this data to optimize irrigation, predict crop yields, 

and identify disease or pest outbreaks, empowering farmers 

to make informed decisions, increase productivity, and 

reduce resource waste. 

Edge computing enables real-time equipment performance 

and predictive maintenance monitoring in industrial settings, 

ensuring optimal productivity and minimizing downtime. 

Coupled with crowdsensing and AI, this convergence 

enhances worker safety by detecting hazards in real-time and 

providing immediate alerts, mitigating accidents, and 

improving overall workplace security. 

However, as these technologies advance, addressing 

important considerations such as data privacy and security is 

crucial. Robust security measures must be implemented to 

protect sensitive information as data is collected and 

processed at the edge. Additionally, establishing data 

governance frameworks and ethical guidelines is imperative 

to ensure the responsible and transparent use of data, 

building trust, and fostering the long-term sustainability of 

these technologies. 

In summary, the relationship between edge computing, 

crowdsensing, NTNs, and AI represents a powerful force 

that has the potential to revolutionize various industries and 

significantly improve the quality of life. By bringing 

computational power closer to the source of data generation, 

leveraging the crowd's collective intelligence, extending 

connectivity beyond traditional networks, and harnessing the 

analytical capabilities of AI, this integration unlocks 

unprecedented opportunities for real-time insights, 

intelligent decision-making, and enhanced efficiency. As 

these technologies continue to advance and intertwine, their 

intricate synergy will shape the future of connectivity, data 

analytics and redefine the way we interact with the digital 

world, paving the way for a smarter, more sustainable future. 

This transformative potential is not only limited to large-

scale industries but also has the ability to empower 

individuals and local communities, democratizing access to 

information and fostering innovation at every level. 

V. RECENT ADVANCES IN AI-POWER NTN FOR 6G 
NETWORK 

In recent years, significant progress has been made in 

developing AI-powered NTNs. The use of AI in NTNs 

provides numerous benefits, such as intelligent network 

management, automatic network optimization, and 

predictive maintenance. In the past few years, researchers 

have explored various AI-based approaches, such as DL, RL, 

and DRL to improve network performance [66],[100]. These 

approaches have been used for various applications such as 

intelligent network slicing, load balancing, and resource 

allocation, enabling the network to operate optimally in 

dynamic and unpredictable environments. 

The integration of AI into NTNs has also led to the 

development of new and innovative network architectures 

that can efficiently handle the vast amounts of data generated 

by 6G networks. One such architecture is the AI-powered 

Open Radio Access Network (ORAN) [101], which utilizes 

AI to optimize network coverage and capacity and minimize 

interference and latency. The AI-powered ORAN also 

allows for dynamic network configuration, enabling the 

network to adapt to changing network conditions in real-

time. Furthermore, researchers have also explored the use of 

AI for network security and privacy in 6G networks. AI-

based security solutions such as Intrusion Detection Systems 

(IDS) and Intrusion Prevention Systems (IPS) can identify 

and prevent security threats in real-time, improving the 

network's overall security [102]. AI-powered privacy 

solutions such as differential privacy can also protect user 

data while enabling network operators to collect valuable 

data for network optimization and management. In addition, 

AI is being used to address energy efficiency challenges in 

6G networks [66]. With the increasing demand for high-

speed connectivity, the energy consumption of 6G networks 

is expected to increase significantly. However, AI-based 

approaches such as energy-efficient resource allocation, 

dynamic sleep mode management, and intelligent power 

control can help to reduce energy consumption and improve 

the overall energy efficiency of the network. 

A. NETWORK PLANNING AND OPTIMIZATION 

The use of AI algorithms in network planning and 

optimization offers numerous benefits, including efficient 

network management, automatic optimization, and 

intelligent decision-making. AI-driven network planning can 

help ensure optimal resource allocation, reduce the cost of 

network deployment, and enhance network performance. 

With the ability to analyze vast amounts of data from 

multiple sources, such as user behavior, network traffic, and 

resource utilization, AI can enable efficient network 

management and improve users' QoS.  

ML algorithms, such as Support Vector Machines (SVMs) 

and Random forests, have been utilized to predict network 

traffic, optimize routing, and allocate resources effectively. 

SVMs can be used to classify network traffic based on 

various criteria, such as the source of the traffic, the type of 

data being transmitted, and the destination of the traffic. This 

enables service providers to allocate network resources more 

efficiently and reduce congestion. On the other hand, 

Random Forests can be used to predict network traffic based 

on historical data and network behavior, enabling service 
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providers to allocate network resources more effectively.  

DRL and Genetic Algorithm (GA) have also been applied to 

improve the network architecture and adapt to changing 

environmental conditions, enhancing the network's overall 

performance. DRL is an AI technique that involves training 

an agent to act in an environment to maximize a cumulative 

reward. This approach has been used to optimize network 

routing, enabling the network to adapt to changing traffic 

patterns and reduce latency. Conversely, GA has been used 

to optimize network parameters such as the number of BSs 

and the frequency allocation, enabling the network to operate 

optimally in dynamic and unpredictable environments.  

AI can analyze data from multiple sources, such as user 

behavior, network traffic, and resource utilization to identify 

areas where network resources are being underutilized or 

overutilized. This can help service providers optimize their 

network architecture and allocate resources more efficiently, 

reducing the overall cost of network deployment. 

Furthermore, AI-driven network planning can ensure 

efficient resource allocation and reduce the cost of network 

deployment, thereby enabling service providers to deliver 

high-quality services while reducing operational costs.  

The application of AI in network planning and optimization 

is expected to become more widespread with the 

advancement of technology and the increasing demand for 

high-speed and reliable connectivity in 6G networks. 

However, there are several challenges that must be addressed 

to ensure the effective implementation of AI in network 

planning and optimization. These challenges include the 

need for standardized data formats, the integration of AI 

algorithms with existing network infrastructure, and the 

development of ethical guidelines for the use of AI in 

network management.  

In summary, AI-driven network planning and optimization 

have emerged as critical research areas in developing AI-

powered NTNs for 6G networks. AI algorithms offer 

numerous benefits, such as efficient network management, 

automatic optimization, and intelligent decision-making. ML 

algorithms such as SVMs and Random Forests have been 

utilized to predict network traffic and allocate resources 

effectively, while DRL and GA have been applied to 

improve the network architecture and adapt to changing 

environmental conditions. AI-driven network planning can 

ensure efficient resource allocation and reduce the cost of 

network deployment, thereby enabling service providers to 

deliver high-quality services while reducing operational 

costs. However, there are several challenges that must be 

addressed to ensure the effective implementation of AI in 

network planning and optimization. 

B. CASE STUDIES AND EXPERIMENTAL RESULTS 

With the rapid development of 6G networks, AI-powered 

NTNs have emerged as a critical area of research to improve 

network management, optimization, and performance. 

Several recent case studies have been conducted to evaluate 

the effectiveness of AI-based approaches in 6G networks. 

One such study focused on using AI in network slicing, 

which allows network operators to partition the network into 

virtual slices with customized functionalities and resources. 

The study demonstrated that the use of AI-based approaches 

such as DL and CNNs could significantly improve network 

slicing performance, enabling better resource utilization and 

enhancing the QoS for end-users [103].  

The authors in [110] propose a cooperative transmission 

scheme between a satellite and an aerial BS based on two 

unsupervised ML algorithms, namely K-means and K-

medoids. The simulation results show that the proposed 

approach demonstrates promising gains in terms of spectral 

efficiency and system sum rate. In [111], the authors 

consider the issue of mobility management due to the 

movements of LEO satellites. They group user equipment in 

different clusters based on K-means clustering algorithm and 

decide handover process based on the distance from its cell 

center. 

In [104], the authors focused on using RL to optimize 

network resource allocation in dynamic and unpredictable 

environments. The study proposed a new approach to 

resource allocation, which combined RL with the GA to 

enable the network to adapt to changing environmental 

conditions. The experimental results demonstrated that the 

proposed approach can significantly improve network 

performance by optimizing the allocation of resources to 

different network functions.  

The work in [105] adopted similar MARL strategy for 

dynamic network slicing. However, the proposed approach 

accelerated the policy deployment by integrating a transfer 

learning method. The results showed that the proposed 

approach can achieve 27% better network performance and 

utilization compared to traditional approaches.  

In [106], an AI-based approach for energy-efficient resource 

allocation in 6G networks is proposed. The proposed 

approach utilized a GA to optimize the allocation of network 

resources, considering each network function's energy 

consumption. The results demonstrated that the proposed 

approach can significantly reduce the network's energy 

consumption while maintaining the desired level of network 

performance. 

Another study by [107] focused on using AI in network 

function virtualization (NFV) to improve network efficiency 

and resource utilization. The study proposed an AI-based 

approach for the placement of virtual network functions 

(VNFs) in the network, which utilized a DRL algorithm. The 

results showed that the proposed approach can significantly 

improve network performance and reduce the resource 

utilization of the network. 

In a different study [108], the authors proposed an AI-based 

approach for network traffic prediction in 6G networks. The 

proposed approach utilized a two-dimensional CNN-based 

long short-term memory (LSTM) to predict network traffic, 

which can enable better resource allocation and network 
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management. The experimental results showed that the 

proposed approach can achieve higher prediction accuracy 

compared to traditional approaches.  

In [109], the authors focused on the use of AI in network 

function placement for edge computing in 6G networks. The 

study proposed an AI-based approach for the placement of 

network functions in the network, which utilized a Q-

learning algorithm. The results showed that the proposed 

approach could significantly improve network performance. 

The above-explained case studies are summarized in Table 

5. 

VI. CHALLENGES AND OPPORTUNITIES IN AI-
POWERED NTNs FOR 6G NETWORKS 

The development of the 6G networks is rapidly advancing, 

and AI has emerged as a key technology in realizing the 

vision of intelligent and efficient 6G networks. AI-powered 

network management is expected to provide numerous 

benefits, including improved network performance, 

enhanced user experience, and reduced operational costs. 

However, achieving these benefits comes with significant 

challenges and requires overcoming various technical and 

practical obstacles. Therefore, this survey paper discusses 

the challenges and opportunities in AI-powered network 

management for 6G networks. 

A. KEY RESEARCH DIRECTIONS FOR AI-POWERED 
NTNs  

As AI technologies continue to evolve, they offer 

tremendous potential to revolutionize the way future 6G 

networks are designed, deployed, and managed. AI-powered 

NTNs is an emerging research area that aims to leverage AI 

techniques to enhance the performance and efficiency of 6G 

networks. However, realizing the full potential of AI-

powered NTNs requires identifying key research directions 

that can overcome the challenges posed by the highly 

dynamic and complex nature of 6G networks. This section 

discusses some of the most promising research directions for 

 
Table 5. Summary of AI Use Cases  

AI Related Work(s) Relevance to NTNs 

SL 

[103] - LSTM 

[106] - CNN 

[108] - CNN-LSTM 

Smart network slicing, node 

clustering or traffic prediction for 

increasing energy efficiency. 

UL [110] – K-means 

Cooperative transmission 

between terrestrial networks and 

NTNs. 

UL [111] – K-means 

Handover of user equipment 

between satellites and ground 

stations. 

RL 
[104] - DQN 

[105] - MADRL 

Smart resource management for 

reducing multi-cell interference. 

RL 

[107] - DQN 

[109] - Soft Actor 

Critic 

Computation offloading via 

coverage deployment or multi-

access edge computing (MEC). 

AI-powered NTNs in 6G networks. 

Multi-objective optimization for AI-powered NTNs: 6G 

networks are expected to support diverse applications with 

different quality-of-service requirements. Multi-objective 

optimization can help balance conflicting objectives, such as 

energy efficiency, spectral efficiency, and reliability, in AI-

powered NTNs.  

Intelligent network planning and deployment: AI-

powered NTNs can leverage intelligent algorithms to 

automate the network planning and deployment process. 

This includes using ML to identify the optimal network 

topology, antenna placement, and resource allocation to 

minimize interference and maximize coverage.  

AI-driven resource allocation and management: The use 

of AI can help to efficiently allocate and manage network 

resources, including frequency bands, power levels, and 

computing resources. This can improve network 

performance and reduce energy consumption. 

Federated learning for distributed NTNs: Federated 

learning is an ML technique allowing devices to 

collaboratively learn a shared model without sharing data. 

This can be used to train AI models for NTNs in a privacy-

preserving and energy-efficient manner.  

Network slicing for AI-powered NTNs: Network slicing 

allows multiple logical networks to be created on top of a 

shared physical infrastructure. This can help to meet the 

diverse requirements of different applications in AI-powered 

NTNs, such as low latency, high bandwidth, and high 

reliability.  

Edge intelligence for AI-powered NTNs: Edge computing 

can perform AI computations at the network edge, reducing 

latency and improving energy efficiency. This includes using 

edge devices, such as BSs and user equipment, to perform AI 

computations and make real-time decisions.  

Explainable AI for NTNs: The development of explainable 

AI can enhance the transparency and interpretability of 

NTNs powered by AI. This includes developing algorithms 

that can explain how AI models make decisions and identify 

potential biases in the data.  

AI-driven security for NTNs: The use of AI can help to 

improve the security of NTNs, including detecting and 

mitigating attacks, identifying vulnerabilities, and enhancing 

privacy and data protection.  

AI for network optimization and self-healing: AI can be 

used to continuously monitor and optimize network 

performance and detect and repair faults automatically. This 

includes using AI to predict and prevent network failures, 

optimize routing and traffic flow, and manage network 

congestion.  

AI for user experience and behavior analysis: AI can be 

used to analyze user behavior and preferences and predict 

and personalize services and content. This includes using AI 

to optimize user engagement, enhance content delivery, and 

improve overall user experience. The key research directions 

for AI-Powered NTNs are summarized in Fig. 7. 
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B. CHALLENGES AND OPEN ISSUES IN DEPLOYING 
AI-POWERED NTNs  

While AI-powered NTNs have significant potential, there 

are also several challenges and open issues that must be 

addressed. These include but are not limited:  

Data privacy and security: AI techniques require large 

amounts of data to train models, but ensuring data privacy 

and security is a significant concern. Organizations must 

ensure that sensitive data is protected and not accessible to 

unauthorized personnel. Additionally, organizations must be 

transparent about the data they are collecting, how it will be 

used, and who has access to it.  

Trustworthiness: AI-powered networks must be 

trustworthy and reliable, with clear accountability 

mechanisms in place to ensure the network functions as 

intended. Organizations must ensure that AI-powered 

networks are transparent and explainable so that users can 

understand how the network is making decisions. 

Additionally, organizations must be transparent about the 

limitations of AI-powered networks so that users understand 

when the network may not be appropriate for specific use 

cases.  

Integration and interoperability: AI-powered networks 

must be able to integrate and interoperate with existing 

networks and devices, including legacy systems. 

Organizations must ensure that AI-powered networks are 

designed to work with existing infrastructure and can operate 

within existing networks. Additionally, organizations must 

ensure that AI-powered networks can communicate with 

other devices and networks using standard protocols. 

Human factors: AI-powered networks must consider the 

human factors involved in network management, including 

user behavior, network administrator skills, and 

organizational structures. Organizations must ensure that AI-

powered networks are designed to meet the needs of the users 

and the organization. This requires understanding the skills 

and knowledge of the network administrators and users and 

the organizational structure and culture.  

Resource limitations: AI-powered networks may require 

significant computational resources, which can be a 

challenge in resource-constrained environments. 

Organizations must ensure that AI-powered networks are 

designed to operate within the resource constraints of the 

environment. Additionally, organizations must consider AI-

powered networks' power consumption and environmental 

impact.  

Lack of standardization: There is a lack of standardization 

in AI-powered network technologies and protocols, which 

can hinder interoperability and scalability. Organizations 

must work together to develop standards for AI-powered 

networks that promote interoperability and scalability.  

Bias and fairness: AI-powered networks must address bias 

and fairness issues in decision-making, particularly in areas 

such as resource allocation and network management. 

Organizations must ensure that AI-powered networks are 

designed to be fair and unbiased and that decisions made by 

the network are transparent and explainable. 

Ethical concerns: AI-powered networks must consider 

ethical concerns related to the use of AI, including 

transparency, accountability, and potential unintended 

consequences. Organizations must ensure that AI-powered 

networks are designed to be transparent and accountable and 

that they do not have unintended negative consequences. 

Regulatory and legal frameworks: AI-powered networks 

must comply with regulatory and legal frameworks related 

to privacy, security, and other issues. Organizations must 

ensure that AI-powered networks are designed to meet 

regulatory and legal requirements and that they are 

transparent and accountable to regulators and other 

stakeholders.  

Lack of domain expertise: Developing AI-powered 

networks requires domain expertise in networking and AI, 

which can be challenging to find in a single individual or 

organization. Organizations must ensure that they have 

access to the necessary expertise to develop and deploy AI-

powered networks and that they are able to collaborate with 

other organizations to share expertise and resources. We 

have summarized these challenges and open issues in Fig. 8 

for better and easier understanding. 

C. OPPORTUNITIES FOR FUTURE RESEARCH 

Despite the challenges and open issues, AI-powered NTNs 

for 6G networks present numerous future research 

opportunities. In the following, we list such opportunities:  

Development of new AI techniques: AI-powered NTNs for 

6G networks require the development of new AI techniques 

Figure 7. Key Research Directions 
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that can address the unique challenges of 6G networks. These 

challenges include the need for real-time processing, large-

scale data analysis, and dynamic network management.  

Research in this area can lead to the development of new 

algorithms and models that can provide better performance, 

accuracy, and efficiency in network management.  

Integration with emerging technologies: The integration 

of AI-powered network management with emerging 

technologies such as edge computing, blockchain, and the 

IoT can create intelligent and efficient networks. Research in 

this area can lead to the development of new architectures 

and protocols that can leverage the benefits of these 

emerging technologies. For example, edge computing can 

reduce latency and improve network response time, while 

blockchain can provide a secure and decentralized network 

management. 

Adoption of new network architecture: AI-powered NTNs 

for 6G networks requires adopting new network 

architectures optimized for AI-powered network 

management. Research in this area can lead to the 

development of new architectures and protocols that can 

provide better scalability, reliability, and performance in 

network management. For example, software-defined 

networks (SDNs) and NFV can provide greater flexibility 

and programmability in network management, which AI-

powered techniques can leverage.  

Exploration of new applications: AI-powered NTNs for 

6G networks can enable a wide range of new applications, 

such as immersive virtual reality, connected vehicles, and 

smart cities. Research in this area can lead to the 

development of new use cases and applications that can 

leverage the benefits of AI-powered network management. 

For example, AI-powered network management can 

optimize network performance and resource allocation for 

virtual reality applications or enable intelligent traffic 

management for connected vehicles.  

Standardization: This is an important area for future 

research in AI-powered NTNs for 6G networks. 

Standardization involves the development of consistent and 

uniform technology and protocols across the industry. This 

is important to ensure the interoperability and scalability of 

AI-powered network technologies. In other words, 

standardization ensures that different AI-powered network 

management systems can work together seamlessly and that 

they can be easily scaled up or down depending on the 

network size and complexity. To achieve standardization, 

researchers can work on developing new standards and 

protocols that can facilitate the adoption and deployment of 

AI-powered NTNs for 6G networks. This can involve 

creating standardized communication protocols, data 

formats, and interfaces that can be used across different 

network management systems. Researchers can also work 

with industry stakeholders and regulatory bodies to create 

industry-wide standards and guidelines that can promote the 

development and adoption of AI-powered NTNs for 6G 

networks. By achieving standardization, AI-powered NTNs 

for 6G networks can become more efficient, effective, and 

reliable, ultimately leading to a better user experience and 

improved network performance. 

Sustainability: AI-powered NTNs for 6G networks must 

also consider the sustainability of network management, 

including the use of renewable energy sources, the reduction 

of energy consumption, and the optimization of network 

resources. Researchers can work on developing new 

techniques and protocols that can ensure the sustainability of 

AI-powered network management.  

Explainability and transparency: AI-powered network 

management should be explainable and transparent to ensure 

trust and accountability. Researchers can work on 

developing new techniques and models that can provide 

insights into how AI-powered network management makes 

decisions and provide explanations for these decisions.  

Resilience: AI-powered NTNs for 6G networks must be 

resilient to cyber-attacks and other security threats. 

Researchers can work on developing new techniques and 

protocols that can ensure the resilience of AI-powered 

network management and protect against these threats. 

Collaboration and partnerships: AI-powered NTNs for 

6G networks require collaboration and partnerships between 

academia, industry, and government to address the complex 

challenges involved in network management. Research in 

this area can lead to the development of new collaborative 

models and frameworks that can facilitate sharing of 

knowledge, resources, and expertise.  

Sustainability: AI-powered NTNs for 6G networks must 

also consider the sustainability of network management, 

including the use of renewable energy sources, the reduction 

Figure 8. Summary of Challenges and Open Issues 
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of energy consumption, and the optimization of network 

resources. Research in this area can lead to the development 

of new techniques and protocols that can ensure the 

sustainability of AI-powered network management.  

In summary, AI-powered NTNs for 6G networks present 

significant challenges and opportunities. Addressing the 

challenges and leveraging the opportunities will require 

significant research and development efforts, but the 

potential benefits of intelligent and efficient networks are 

worthy of these efforts. 

VII. CONCLUSIONS 

In this paper, we comprehensively surveyed AI-powered 

NTNs for 6G wireless communication networks. We first 

discussed the background and motivation for using NTNs in 

6G networks and their deployment and management 

challenges. We then highlighted the key features and 

requirements of NTNs, including the role of 

LEO/MEO/GEO satellites, HAPS, and UAVs in 6G 

networks. Then, we discussed various AI techniques for 

optimizing NTNs, including ML, DL, RL, and DRL, and 

explored the recent advances in AI-powered NTNs for 6G 

networks. We also identified key research directions, 

challenges, and opportunities in AI-powered NTNs for 6G 

networks.  

Our survey sheds the light that AI-assisted techniques are the 

key ingredients for realizing 6G since AI facilitates NTNs to 

operate optimally in dynamic and unpredictable 

environments. However, the reliability of AI models depends 

on the quantity and quality of training dataset. How to create 

a synthetic training dataset which mimics real-world 6G 

observations will be crucial. In this context, utilizing digital 

twin to generate virtual replicas of real-world 6G 

communications data could be an interesting avenue for 

future research. 
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